
0022—2461 ( 1998 Kluwer Academic Publishers 3131

JOURNAL OF MATERIALS SCIENCE 33 (1998) 3131 — 3135

Fe3Si formation in Fe–Si diffusion couples
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Two different types of bulk diffusion couples for the Fe—Si system, i.e. Fe/Si and Fe/Fe3Si,
have been studied, with emphasis placed on the formation and growth of Fe

3
Si. Results

indicate that Fe3 Si forms initially in Fe/Si couples, followed by FeSi and then FeSi2 . Fe3Si has
a wide range of stoichiometry, from 10—25 at % Si; however, only stoichiometric Fe3Si
appeared in Fe3Si diffusion layers of Fe/Si couples. Off-stoichiometric Fe3Si formed in
Fe3Si/Fe couples. The free energy of Fe3Si and Fe—Si affinity are used to explain Fe3Si
formation behaviour and the atomic diffusion mechanism in the Fe3Si lattice. 1998
Kluwer Academic Publishers

1. Introduction
Recent work by one of the authors on bulk Fe—Si
diffusion couples indicated that Fe

3
Si, which forms

between a-Fe and FeSi, is stoichiometric with a very
narrow composition range [1]. This result appears to
contradict the accepted version of the Fe—Si phase
diagram (Fig. 1 [2]). Fe

3
Si, according to the diagram,

has a wide range of stoichiometry, i.e. 10—25 at % Si.
In this paper, we examine this question more carefully
and propose an explanation for this apparent discrep-
ancy.

Stoichiometric Fe
3
Si (Fe

75
Si

25
) has a DO

3
structure, i.e. a cubic superstructure consisting of
four interpenetrating f c c sublattices, labelled A, B,
C and D, with origins at the points (0, 0, 0)
(1/4, 1/4, 1/4), (1/2, 1/2, 1/2) and (3/4, 3/4, 3/4) arranged
regularly along the body diagonal (Fig. 2 [3]). Each
A atom is at the centre of a cube with four B and
four D atoms at the corners in tetrahedral arrange-
ments. Similarly, each B atom is at the centre of a
cube with four A and four C atoms at corners in cubic
arrangements. In stoichiometric Fe

3
Si, iron atoms

occupy the A, C and B sites. Thus, the iron atoms on
equivalent (both structurally and magnetically) A and
C sites have tetrahedral point symmetry with four iron
[B] and four silicon [D] atoms as nearest neigh-
bours. The Fe[B] atoms have cubic point symmetry
with eight Fe[A,C] atoms as nearest neighbours,
as in elemental b c c iron. Table I illustrates the
neighbour configurations of stoichiometric Fe

3
Si

[4].
For silicon compositions between 10 and 25 at %,

off-stoichiometric Fe
3
Si forms DO

3
-related struc-

tures. Fe[A,C] sites can have either five iron and three
silicon atoms as nearest neighbours or six iron and
two silicon atoms as nearest neighbours [5]. The dis-
ordered, but DO

3
-related, Fe—Si alloys of this type are

labelled as Fe
3`y

Si
1~y

and they exist in the composi-
tion range 0.4)y)1.0 [3].

Paoletti and Passari [6] established that the mag-
netic moments of the two types of iron atoms were
different; values of 2.4l

B
and 1.2l

B
(l

B
is the Bohr

magneton) were reported for Fe[B] and Fe[A,C]
atoms, respectively. More recent data [3] suggest
values of 2.2—2.4l

B
and 1.1—1.35l

B
for Fe[B] and

Fe[A,C]. Swintendick [5] was the first to show that
energy-band calculations, based on a rigid-level spin-
polarized model, were capable of explaining the differ-
ent magnetic moments on A, C and B sites.

Preferential site occupancy by transition metal
impurities substituted into Fe

3
Si has been reported

by several researchers [4, 7—9]. Impurities to the
left of iron in the Periodic Table prefer Fe[B] sites and
those beneath and to the right of iron enter Fe[A,C]
sites.

Taking into account chemical and magnetic in-
teraction, numerical values of energy parameters for
the Fe—Si system have been determined using the
Bragg—Williams—Gorsky (BWG) model and C

P
(heat

capacity) integration method [10—14]. The free energy
of Fe

3
Si was found to decrease with decreasing iron

concentration at a fixed temperature. In addition,
Fe—Si affinity was found to be higher than Fe—Fe
affinity [15, 16].

In the present work, two types of Fe—Si diffusion
couples, i.e. Fe—Si and Fe—Fe

3
Si, are studied. The

results obtained are discussed from the point of view
of the free energy of Fe

3
Si, Fe—Si affinity, Fe

3
Si forma-

tion and atomic diffusion mechanisms in the Fe
3
Si

lattice.

2. Experimental procedure
Diffusion couples were constructed from three differ-
ent components: iron (99.95%), high-purity S1 1 1T
oriented single-crystal silicon and an Fe—Si alloy. The
Fe—Si alloy, containing 25 at % Si, was produced in an
induction furnace under an inert atmosphere (10% Ar



Figure 1 Fe—Si binary phase diagram.

Figure 2 Schematic drawing of the Fe
3
Si structure, showing the

four different sites [3].

TABLE I Neighbour configuration in stoichiometric Fe
3
Si [4]

Neighbour 1 2 3 4 5 6

R! 0.43 0.5 0.705 0.83 0.86 1.00
A,C 4B 6A,C 12A,C 12B 8 A, C 6 A, C

4D 12D
B 8 A, C 6D 12B 24A,C 8D 6B
D 8 A, C 6B 12D 24A,C 8B 6D

! R is the distance expressed as a fraction of the lattice parameter a.

and 90% He). After the alloy was made, a homogeni-
zation anneal was done at 1000 °C for 24 h. The diffu-
sion couple assembly procedure has been given in
detail elsewhere [1]; only a brief description will be
given here. The surfaces of the iron, silicon and Fe—Si
alloy were cut, ground and polished to thicknesses of
4.5, 3.0 and 4.5 mm, respectively; The faces of the
pieces, that were to be in contact, were polished to
a mirror finish on a 6 lm diamond wheel followed by

polishing on a 0.05 lm Al
2
O

3
wheel. Polishing was

done shortly before fabrication of the couples, in order
to minimize oxidation of the polished surfaces. The
couples were clamped together, sealed individually in
quartz tubes with &1 g zirconium powder and an-
nealed at 700 °C for times ranging from 7—1000 h.
After heat treatment, the couples were sectioned per-
pendicular to the contact plane and examined by
optical and scanning electron microscopy (SEM). En-
ergy dispersive X-ray (EDX) spectroscopy was used to
determine the composition and composition profiles.
FeSi was used as a standard for quantitative EDX.

3. Results
3.1. Fe—Si couples
An SEM backscattered electron image for an Fe—Si
couple annealed at 700 °C for the shortest time studied
(7 h) is shown in Fig. 3a. A corresponding composition
profile is shown in Fig. 3b. This condition clearly re-
presents the early stages of silicide formation and
demonstrates that Fe

3
Si forms initially in bulk

couples. No FeSi or FeSi
2
, the other two phases that

would be expected to form at this temperature, were
detected, at least within the resolution of the SEM.
Fe

3
Si was found to be stoichiometric, which is in

agreement with previous work [1], with a composi-
tion corresponding to 27$0.5 at % Si, which is

Figure 3 (a) SEM backscattered electron image of the diffusion zone
of an Fe—Si couple annealed at 700 °C for 7 h. (b) Concentration
profile for the couple in (a).
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Figure 4 (a) SEM backscattered electron image of the diffusion zone
of an Fe—Si couple annealed at 700 °C for 1007 h. (b) Concentration
profile for the couple in (a).

slightly above the ideal value of 25 at% Si. The slight-
ly higher silicon concentration, relative to the stoi-
chiometric value, can be attributed to the fact that
FeSi, and not Fe

3
Si, was used as the standard for EDX

analysis. In any case, it is clear that the composition of
Fe

3
Si is constant throughout the layer.

An SEM image and a concentration profile of an
Fe—Si couple, annealed at 700 °C for 1007 h (longest
annealing time), are shown in Fig. 4. Three silicide
layers, corresponding to Fe

3
Si, FeSi and FeSi

2
, ap-

pear. FeSi was first observed to appear at &23 h at
700 °C, while FeSi

2
was initially detected after 234 h.

In both cases, the phases probably occurred sooner
during annealing; however, the order of formation was
Fe

3
Si, FeSi and then FeSi

2
. As observed for the lowest

annealing time, the silicon concentration is constant
within the Fe

3
Si layer. At the Fe

3
Si/a-Fe interface,

there are some cracks and missing material. This is
because Fe

3
Si is brittle and is unable to deform during

polishing like the a-Fe adjacent to it.
EDX results from all Fe—Si diffusion couples

studied showed only stoichiometric Fe
3
Si adjacent to

a-Fe. More than 100 positions along the Fe
3
Si/a-Fe

interface of each couple were examined in order to
confirm this result.

Fe
3
Si growth was monitored to determine whether

Fe
3
Si grew continually throughout the annealing pro-

cess. The thickness of the Fe
3
Si layer is plotted as a

function of the square root of annealing time in Fig. 5.
It is clear that Fe

3
Si continues to grow throughout

Figure 5 Plot of Fe
3
Si layer thickness versus time for Fe—Si couples

annealed at 700 °C.

annealing and the linear dependence indicates that
growth is diffusion controlled.

One possible explanation for the lack of off-stoi-
chiometric Fe

3
Si is that the Fe

3
Si/a-Fe interface re-

gion had separated during annealing, cutting off the
supply of iron. If this was indeed the case, Fe

3
Si would

convert to the most silicon-rich composition, i.e.
stoichiometric Fe

3
Si. We believe that this is not the

reason for the observed phenomenon, as crack-free
regions along the interface were observed and these
contained only the stoichiometric form of Fe

3
Si.

3.2. Fe3Si—Fe couples
A scanning electron micrograph and a corresponding
concentration profile of the diffusion zone between
Fe

3
Si and a-Fe, for a couple annealed at 700 °C for

120 h, are shown in Fig. 6. A variable composition
layer, identified as off-stoichiometric Fe

3
Si (Fig. 6a), is

present at the Fe
3
Si/a-Fe interface. The layer thick-

ness (&15—20 lm) was of the same order as the Fe
3
Si

thickness in the Fe/Si couples annealed at 700 °C for
only 7 h. Other couples produced similar results, i.e.
off-stoichiometric Fe

3
Si formed between Fe

3
Si and

Fe, and the Fe
3
Si growth rate was considerably lower

compared with stoichiometric Fe
3
Si growth in Fe—Si

couples.

4. Discussion
According to the accepted version of the Fe—Si phase
diagram (Fig. 1), Fe

3
Si exists over a wide composition

range (11—25 at % Si) at 600—700 ° C. A concentration
profile, then, from an Fe—Si diffusion couple annealed
in this temperature range, should show a smooth
transition from a-Fe to Fe

3
Si. Composition profiles

obtained here, and from a previous study [1], from
Fe—Si couples indicate that only stoichiometric Fe

3
Si,

and not Fe
3`y

Si
1~y

, forms. The concentration pro-
files (Figs 3b and 4b) have a vertical segment between
stoichiometric Fe

3
Si and a-Fe. On the other hand,

off-stoichiometric Fe
3
Si does form in Fe—Fe

3
Si diffu-

sion couples. The reason for this behaviour will be
discussed below.
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Figure 6 (a) SEM backscattered electron image of the diffusion zone
of an Fe

3
Si—Fe couple annealed at 700 °C for 120 h. (b) Concentra-

tion profile for the couple in (a).

In a phase transformation, in general, there are two
main factors controlling phase formation, i.e. thermo-
dynamics (free energy change) and kinetics. Free en-
ergy calculations can be done, taking into account
chemical and magnetic interactions, using a BWG
model [10—14]. Calculations are briefly outlined be-
low.

The most stable configuration corresponds to the
minimum value in the configurational free energy, F

,

F
,
"º

,
!¹S

,
(1)

º
,

is the internal energy and can be expressed as

º
,
"º0

,
!NM 4 [¼#J (2q!1)2]x2

!3wx2#3/2w(y2#z2)N

!NC
F%

C
S*
M 4 [¼#J(2q!1)2]#3wN

#4NC
F%

J (2q!1)2 (2)

where

º0
,
"NM4(C

F%
»

F%F%
#C

S*
»

S*S*
)

#3(C
F%

v
F%F%

#C
S*
v
S*S*

)N (3)

S
,

is the entropy term and has two components.

S
,
"Sc

,
#Sq

,
(4)

The chemical term is given as

Sc
,
"!kN/4+ (pL

F%
lnpL

F%
#pL

S*
lnpL

S*
) (5)

and the magnetic term is

Sq
,
"!kNC

F%
[q ln q#(1!q) ln(1!q)] (6)

k is the Boltzman constant, while ¼ and w are the
chemical interchange energies for the process for near-
est neighbours and next nearest neighbours, respec-
tively.

¼"!2»
F%S*

#»
F%F%

#»
S*S*

(7)

w"!2v
F%S*

#v
F%F%

#v
S*S*

(8)

J is the magnetic interchange energy and N is the
number of lattice sites. The chemical order parameters
(x, y and z) are defined by the occupation probabilities,
pL
F%

, of iron in the four sublattices (L"A, B, C or D).

x"1/4 (pA
F%
#pC

F%
!pB

F%
!pD

F%
) (9)

y"1/2(pB
F%
!pD

F%
) (10)

z"1/2 (pA
F%
!pC

F%
) (11)

pA
F%
"C

F%
#x#z (12)

pC
F%
"C

F%
#x!z (13)

pB
F%
"C

F%
!x#y (14)

pD
F%
"C

F%
!x!y (15)

pL
S*
"1!pL

F%
(L"A, B, C, D) (16)

C
F%
"(1!C

S*
) is the atomic concentration of iron.

The magnetic order parameter is defined by spin state:
0.5(q(1.

Free energy calculations for Fe
3
Si as a function of

silicon atom fraction are shown in Fig. 7 for a temper-
ature of 700 °C. The free energy decreases with in-
creasing silicon fraction from 0.12 to 0.25 (12—25 at%
Si). Thermodynamically, then, stoichiometric Fe

3
Si is

the most stable form of Fe
3
Si, and would be expected

to form preferentially to off-stoichiometric Fe
3
Si.

Figure 7 Plot of the difference between the configurational free
energy term F

,
and the internal energy term º0

,
, which is not

a function of the order parameter, versus silicon atom fraction at
700 °C.
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Reaction kinetics in diffusion couples are influenced
by diffusional processes. Wever and Frohberg [16]
and Bakker and Westerveld [17] have proposed that
during diffusion in ordered DO

3
lattices, the domi-

nant species (iron in this case) jumps between the three
iron sublattices only, i.e. A, C and B sublattices.
This model has been confirmed by Sepiol and Vogl
[18] using quasielastic Mo( ssbauer spectroscopy
(QMS) and quasielastic incoherent neutron scattering
(QNS). Strong affinity exists between neighbouring
iron and silicon atoms in Fe

3
Si, which has been

confirmed by Mo( ssbauer spectroscopy [14]. It was
found that silicon atoms share their 3s and 3p elec-
trons with neighbouring iron atoms, thus filling the 3d
states of the iron atoms. Garba and Jacobs [15] also
calculated the affinity of Fe

3
Si, using a tight binding

model, and showed that a stronger affinity exists be-
tween neighbouring iron and silicon atoms than be-
tween neighbouring iron and iron atoms. Therefore, it
is easier for iron to occupy iron sites than silicon sites,
when iron atoms are diffusing in Fe

3
Si. If iron atoms

only diffuse via A, C and B sites in stoichiometric
Fe

3
Si, the system structure and free energy will be

unchanged.
In off-stoichiometric Fe

3
Si, a fraction of the iron

atoms must occupy antisite positions on the D sublat-
tice [18,19]. The antistructure has a slightly lower
density and a slightly higher vacancy concentration
than the ordered structure [17, 20]. Therefore, one
might intuitively expect the antistructure to exhibit
faster diffusion rates due to the higher vacancy con-
centration. Kikuchi and Sato [21], however, have
shown that in an antisite disordered structure, an
atom that has jumped to the ‘‘wrong’’ sublattice does
not return immediately to a ‘‘correct’’ position, there-
by inhibiting migration over long distances. As the
iron concentration increases in Fe

3
Si, the number of

antisite positions increases which leads to a reduction
in the diffusion coefficient. Diffusivities have been
measured for stoichiometric and off-stoichiometric
Fe

3
Si [18]. At 720 °C, the diffusivity for Fe

80
Si

20
is

a factor of five to ten times lower than that for
stoichiometric Fe

3
Si.

One can conclude from the above arguments that
not only is stoichiometric Fe

3
Si thermodynamically

the most stable form of Fe
3
Si, but its growth is also

kinetically preferred over off-stoichiometric Fe
3
Si. As

such, only stoichiometric Fe
3
Si would be expected

in Fe/Si couples. In the Fe/Fe
3
Si couples, off-stoi-

chiometric Fe
3
Si forms at the interface, but grows

more slowly as a result of slower diffusion rates
through the antistructure.

5. Conclusions
1. In the Fe

3
Si diffusion layer of Fe—Si diffusion

couples, only stoichiometric Fe
3
Si forms. Off-stoi-

chiometric Fe
3
Si forms in Fe

3
Si—Fe couples. These

results are explained based on thermodynamic and
kinetic arguments.

2. The thickness of the Fe
3
Si layer in Fe—Si diffu-

sion couples increases linearly as a function of the
square root of the diffusion time.

3. At 700 °C stoichiometric Fe
3
Si is the most stable

form of Fe
3
Si.
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